Pre-operative Lumbar Plexus Block Provides Superior Post-operative Analgesia when compared with Fascia Iliaca Block or General Anesthesia alone in Hip Arthroscopy

Andrew B. Wolff, MDa
Geoffrey Hogan, BAa
James Capon, BS, MSa
Hayden Smith, BAa
Alexandra Napoli, BSa
Patrick Gaspar, MDb

aWashington Orthopaedics and Sports Medicine, Washington DC;
bReston Anesthesia Associates, Reston, VA
I have the following financial relationships to disclose:

- Consultant: Stryker
Background and Rationale

• Optimal anesthesia for arthroscopic surgery of the hip has yet to be defined
Background and Rationale

• Considerations specific to hip arthroscopy include:

 o Control of intra-operative pain

 o Adequate muscle relaxation to allow for distraction for work in the central compartment

 o Post-operative pain control
Background and Rationale

• We sought to compare general anesthesia alone to general anesthesia preceded by 2 different nerve blocks:

 o Fascia Iliaca block

 o Lumbar Plexus Block
Hip Innervation

- The hip joint is innervated by the femoral nerve, obturator nerve, the sacral plexus via the nerve to the quadratus femoris, and at times, directly via the sciatic nerve.¹
• The anterior portion of the hip joint is innervated by the Femoral and Obturator Nerves

• The anterolateral thigh is innervated by the Lateral Femoral Cutaneous Nerve
• The posterior portion of the hip joint is innervated by the:

 • Nerve to the Quadratus Femoris
 • The Superior Gluteal Nerve
 • Directly via the Sciatic Nerve
Lumbar Plexus Blockade Reduces Pain After Hip Arthroscopy: A Prospective Randomized Controlled Trial
Jacques T. YaDeau, MD, PhD,* Tiffany Tedore, MD,‡ Enrique A. Goytizolo, MD,* David H. Kim, MD,* Douglas S. T. Green, MD,* Anna Westrick, MD,* Randall Fan, MD,‡ Matthew C. Rade, BA,* Anil S. Ranawat, MD,†§ Struan H. Coleman, MD, PhD,† and Bryan T. Kelly, MD†§
From the Departments of *Anesthesiology and †Orthopaedic Surgery, Hospital for Special Surgery; and Departments of ‡Anesthesiology and §Orthopaedic Surgery, New York–Presbyterian Hospital, Weill Cornell Medical College, New York, New York.

• Compared Spinal Epidural to Spinal Epidural plus lumbar plexus block

• Statistically significant decrease in PACU pain scores (-0.9 on 0-10 scale)
• Significantly lower pain up to 6 hours post-operatively
• 6 of 27 patients in the femoral nerve block group reported falls in the first 24 hours post-operatively
Fascia Iliaca Block

• Provides Femoral and Lateral Femoral Cutaneous Nerve blockade

Lumbar Plexus Block

- Provides Femoral, Lateral Femoral Cutaneous, and Obturator nerve blockade

Image from www.jaaos.org accessed 9/9/15
Materials and Methods

• Retrospective chart review
• 145 consecutive patients who underwent arthroscopic hip surgery
• Single surgeon
• Single ambulatory surgery center
• Three anesthesiologists
Materials and Methods

- Anesthesiologists performed all pre-operative fascia iliaca blocks under ultrasound.
- Goal is a medial to lateral spread of local anesthetic underneath the fascia iliaca.

Materials and Methods

• Anesthesiologist performed all pre-operative lumbar plexus blocks under ultrasound.

• Goal is dispersion of anesthetic in a fascial plane within the psoas muscle where plexus roots are situated.

Materials and Methods

- The local anesthetic used for both techniques was 40 mL 0.2% Ropivacaine with 4 mg of preservative free Decadron.
- Post-op knee immobilizer used to prevent falls due to Femoral Nerve motor blockade.

Materials and Methods

• The first 55 procedures performed under general anesthesia alone.

• The subsequent 30 procedures underwent a fascia iliaca block prior to general anesthesia.

• A third cohort of 60 procedures received lumbar plexus blockade prior to GA.
Materials and Methods

- Groups were compared with respect to:
 - Gender
 - Age
 - Procedure performed
 - Pain scores (0-10 scale) recorded at 0, 30, 60, 90 and 120 minutes postoperatively in the post-anesthesia care unit (PACU)
 - Total morphine-equivalent dose in the PACU
 - Time to discharge
 - Presence of nausea in the PACU requiring anti-emetic medication
Materials and Methods

- Groups were compared against one another using a two-tailed, unequal sample size and unequal variance independent sample Student’s t-test with regards to continuous demographic and postoperative data.
- Chi Square analysis was employed for categorical data.
- Pain scores were further analyzed to control for covariate pre-operative pain using ANCOVA.
- For the data analysis in this study, a p-value less than 0.05 was determined to be statistically significant signifying that a difference between the two experimental groups exists.
Results

<table>
<thead>
<tr>
<th>Table 1: Patient Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gen (n=55)</th>
<th>Gen + FI (n=30)</th>
<th>Gen + LPB (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Female</td>
<td>37</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>Age, mean ± Std Err</td>
<td>34.51 ± 1.55</td>
<td>30.17 ± 2.47</td>
<td>35.45 ± 1.61</td>
</tr>
<tr>
<td>Mean Height (m)</td>
<td>1.69</td>
<td>1.69</td>
<td>1.7</td>
</tr>
<tr>
<td>Mean Weight (kg)</td>
<td>70.39</td>
<td>67.84</td>
<td>70.19</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>24.22</td>
<td>23.59</td>
<td>24.18</td>
</tr>
<tr>
<td>Procedure Type, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femoral Osteoplasty</td>
<td>47 (85.5)</td>
<td>21 (73.3)</td>
<td>51 (86.7)</td>
</tr>
<tr>
<td>Acetabular Osteoplasty</td>
<td>23 (41.8)</td>
<td>9 (30)</td>
<td>23 (38.3)</td>
</tr>
<tr>
<td>No Osteoplasty</td>
<td>7 (12.7)</td>
<td>8 (26.7)</td>
<td>8 (13.3)</td>
</tr>
<tr>
<td>Labral Repair</td>
<td>33 (60)</td>
<td>24 (80)</td>
<td>30 (50)</td>
</tr>
<tr>
<td>Labral Reconstruction</td>
<td>18 (32.7)</td>
<td>4 (13.3)</td>
<td>22 (36.7)</td>
</tr>
<tr>
<td>Labral Debridement</td>
<td>6 (10.9)</td>
<td>2 (6.7)</td>
<td>11 (18.3)</td>
</tr>
<tr>
<td>Capsular Plication</td>
<td>32 (58.2)</td>
<td>13 (43.3)</td>
<td>18 (30)</td>
</tr>
<tr>
<td>Glut min/med Repair</td>
<td>0 (0)</td>
<td>1 (3.3)</td>
<td>2 (3.3)</td>
</tr>
</tbody>
</table>
Results

Table 3. Pre-Operative and PACU Pain Scales

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gen</th>
<th>Gen + F1</th>
<th>95% CI of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µ ± Std Err</td>
<td>n</td>
<td>µ ± Std Err</td>
</tr>
<tr>
<td>Pre-Op Pain</td>
<td>2.36±0.35</td>
<td>55</td>
<td>2.73±0.44</td>
</tr>
<tr>
<td>Pain in PACU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t=0</td>
<td>3.25±0.45</td>
<td>55</td>
<td>4.12±0.72</td>
</tr>
<tr>
<td>t=30</td>
<td>4.1±0.39</td>
<td>55</td>
<td>4.72±0.58</td>
</tr>
<tr>
<td>t=60</td>
<td>3.62±0.33</td>
<td>54</td>
<td>4.08±0.48</td>
</tr>
<tr>
<td>t=90</td>
<td>3.32±0.37</td>
<td>37</td>
<td>3.5±0.4</td>
</tr>
<tr>
<td>t=120</td>
<td>3.08±0.49</td>
<td>18</td>
<td>3.85±0.74</td>
</tr>
</tbody>
</table>

Table 4. Pre-Operative and PACU Pain Scales

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gen</th>
<th>Gen + LPB</th>
<th>95% CI of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µ ± Std Err</td>
<td>n</td>
<td>µ ± Std Err</td>
</tr>
<tr>
<td>Pre-Op Pain</td>
<td>2.36±0.35</td>
<td>55</td>
<td>2.63±0.3</td>
</tr>
<tr>
<td>Pain in PACU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t=0</td>
<td>3.25±0.45</td>
<td>55</td>
<td>2.03±0.39</td>
</tr>
<tr>
<td>t=30</td>
<td>4.1±0.39</td>
<td>55</td>
<td>3.08±0.4</td>
</tr>
<tr>
<td>t=60</td>
<td>3.62±0.33</td>
<td>54</td>
<td>2.57±0.29</td>
</tr>
<tr>
<td>t=90</td>
<td>3.32±0.37</td>
<td>37</td>
<td>2.16±0.29</td>
</tr>
<tr>
<td>t=120</td>
<td>3.08±0.49</td>
<td>18</td>
<td>1.57±0.38</td>
</tr>
</tbody>
</table>

Independent sample Student’s t-test results for post-operative pain scores
Results

Table 2. Pre-Operative and PACU Pain Scales

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gen</th>
<th>Gen + Fl</th>
<th>Gen + LPB</th>
<th>p-value</th>
<th>F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Op Pain</td>
<td>μ ± Std Err</td>
<td>n</td>
<td>μ ± Std Err</td>
<td>n</td>
<td>μ ± SD</td>
</tr>
<tr>
<td>t=0</td>
<td>2.36±0.35</td>
<td>55</td>
<td>2.73±0.44</td>
<td>30</td>
<td>2.63±0.3</td>
</tr>
<tr>
<td>t=30</td>
<td>3.25±0.45</td>
<td>55</td>
<td>4.12±0.72</td>
<td>30</td>
<td>2.03±0.39</td>
</tr>
<tr>
<td>t=60</td>
<td>4.1±0.39</td>
<td>55</td>
<td>4.72±0.58</td>
<td>30</td>
<td>3.08±0.40</td>
</tr>
<tr>
<td>t=90</td>
<td>3.32±0.37</td>
<td>37</td>
<td>3.5±0.4</td>
<td>30</td>
<td>2.16±0.29</td>
</tr>
<tr>
<td>t=120</td>
<td>3.08±0.49</td>
<td>18</td>
<td>3.85±0.74</td>
<td>13</td>
<td>1.57±0.38</td>
</tr>
</tbody>
</table>

- ANOVAᵇ and ANCOVAᶜ results. Analysis of covariance controlling for covariate pre-operative pain.
Results

Pain Scores averaged across all time intervals in PACU. Error bars represent standard error of the mean.
Results

Pain Scores in PACU
Results

• No difference in morphine-equivalent dosage
• No difference in time to discharge
• No difference in nausea requiring anti-emetics
Results

• No complications in Gen or Fl groups

• There were no falls in either group

• There was a seizure of ~10 seconds in one patient in the LPB group

 o Patient was closely monitored and had no drop in oxygen saturation or blood pressure, no arrhythmia and had an immediate and complete recovery after the seizure

 o Decision was made to continue with surgery, which proceeded without further complication
Limitations

• Retrospective
• Single surgeon
• Single facility
• Several different nurses in the PACU
• Three different anesthesiologists
• No clear protocol set prior to initiation of the trial for administration of narcotics, anti-emetics or criteria for discharge
• Pain scores were patient reported to nurses in the PACU, not to an unbiased observer.
Conclusions

• No significant benefit to Fascia Iliaca Block in concert with GA versus GA alone

 o Given the extra time, cost, potential risk, consideration should be given to abandoning this for hip arthroscopy
 o Femoral Nerve and Lateral Femoral Nerve blockade insufficient to provide meaningfully beneficial changes in post-op pain, nausea, time in PACU, morphine equivalent dosage
 • No blockade of Obturator, Nerve to Quadratus, Sciatic,
Conclusions

• Lumbar Plexus Block administered in conjunction with GA provides significant and clinically meaningful decrease in post-operative pain in PACU

• Risks of LPB and experience of anesthesiologist should be considered before offering this technique to patients
References

• Anaraki et al. The Effect of Fascia Iliaca Compartment Block Versus Gabapentin on Postoperative Pain and Morphine Consumption in Femoral Surgery, a Prospective, Randomized, Double-Blind Study. Indian J Pain 2014;28(2)111-116.
• Fascia Iliaca Block. The New York School of Regional Anesthesia—NYSORA 2013.
• Lumbar Plexus Block. The New York School of Regional Anesthesia—NYSORA 2013.